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Abstract

High speed linear aerodynamic theories like piston theory
and Newtonian impact theory are relatively inexpensive to use
for flutter analysis. These theories have limited areas of
applicability depending on the configuration and the flow
conditions. In addition, these theories lack the ability to capture
viscous, shock and real gas effects. CFD methods can model all
of these effects accurately, but the unsteady calculations required
for flutter are expensive and often impractical. This paper
describes a method for using steady CFD calculations to
approximate the generalized aerodynamic forces for a flutter
analysis. Example two-and three-dimensional aerodynamic
force calculations are provided. In addition, a flutter analysis of
a NASP-type wing will be discussed.

Nomenclature

Ao = real part of GAF

A; = imaginary part of GAF

AIC = aerodynamic influence matrix

b = wing semichord

Cp = pressure coefficient, (p-poo) /G

d = arbitrary scale factor, ¢ Vo

GAF = generalized aerodynamic force matrix

k = reduced frequency, wb/V..,

p = pressure

g = jth generalized coordinate

q; = arbitrary scale factor used in calculation of real
pressures for jth mode

qj = arbitrary scale factor used in calculation of
imaginary pressures for jth mode

g = dynamic pressure, 1/2poVo?

S = surface grid contour

So = initial surface grid contour

S; = surface grid contour deformed into jth mode shape

t = time

v = velocity

w = normal wash

Ws = steady state mass flux vector

X = x-coordinate

y = y-coordinate

z = vertical deformation of surface

Z9,j = complex amplitude of jth mode

z = z-coordinate

j = jth mode shape function

¢; = jMintegrated mode shape function for calculating
imaginary pressures

P = density

@ = circular frequency

# Acrospace Engincer, Member AIAA.
& Staff Engineer, Senior Member AIAA.

S ints/Subscri
R = real part of quantity
I = imaginary part of quantity
ss = steady state or static aeroelastic value of quantity
o = free stream value of quantity

Introduction

The NASP vehicle in its ascent trajectory will be required to
fly through an extraordinary range of Mach number conditions,
Presently, reliable and accurate linear lifting surface theory codes
exist for predicting unsteady acrodynamic forces and performing
flutter analyses for general configurations at subsonic Mach
numbers and low supersonic Mach numbers. For Mach
numbers above 3.0, methods such as piston theory! and
Newtonian impact theoryZ have been used to predict the
unsteady aerodynamiic forces. However at the higher Mach
numbers, the validity of using these quasi-steady methods
becomes more questionable.

Piston theory and Newtonian impact theory are both based
on the assumption that the flow is a point function, that is, the
pressures are only dependent upon the local conditions. The
validity in using these methods is an issue involving both the
speed range and the complexity of the vehicle geometry. For
piston theory to be valid, it is necessary to have a narrow flow
region between the aerodynamic surface and the shock imparted
by the surface's leading edge. However, the locations of these
regions can change as a result of changes in speed or vehicle
angle of attack. In any case, if the flow is such that the shock
envelops the aerodynamic surface, then Newtonian impact
theory could be used. An aspect of the acrodynamics that is
totally disregarded by both of these theories is the interaction
between, and the edge effects of, the various aerodynamic
surfaces. Also not modeled are viscous, real gas and ionization
effects that may occur at very high Mach numbers.

Generally, piston and Newtonian impact theories can not
account for the many unknowns at hypersonic conditions and
should be used only when "approximate" aerodynamics are
acceptable, such as, during the preliminary stages of aircraft
design or analysis. The best way to determine the accuracy and
region of applicability of these simple methods is by comparing
the aerodynamic force predictions with results from more exact
acrodynamic theories, such as, Euler or Navier-Stokes theories.
The quasi-steady theory, described next, is being developed to
provide accurate predictions of aeroelastic response for those
flight conditions where the assumptions defined by these simple
methods are violated.

Unsteady CFD calculations may be used for flutter
calculations and provide improved accuracy over piston and
impact theories. The unsteady CFD calculations required to
determine a flutter point are computationally expensive. Steady
CFD solutions, on the other hand, are easier to obtain. This
paper describes the development of a quasi-steady approach for



using steady CFD calculations to estimate the unsteady
aerodynamic forces necessary for flutter calculations. The
approach uses two separate CFD solutions per vibratory mode:
one solution for the real part of the pressures and another for the
imaginary part of the pressures. These pressures are then used
to calculate the generalized aerodynamic force (GAF) matrices
that can be used in a conventional frequency domain flutter
analysis.

This paper is subdivided into three main sections. The first
section describes the concept of quasi-steady aerodynamics. It
is designed to acquaint the unfamiliar reader with basic concepts
that will be built upon in the development of the quasi-steady
CFD method. The second section describes the method and
presents example two- and three-dimensional aerodynamic
calculations. The third section discusses flutter analyses of a
high-speed wing at several Mach numbers. The example quasi-
steady CFD calculations will be compared with unsteady CFD
calculations were available, and all the results will be compared
with piston theory results.

Quasi-Steady Concept

The quasi-steady concept as applied to complex hypersonic
flow conditions takes advantage of small perturbations and the
small time-constants of high velocity flow. In applying the
small perturbations to the flow, it is assumed that the complex
flow phenomena described by the Euler or Navier-Stokes theory
varies linearly if the vehicular motions induced into the flow are
considered small enough. With small perturbations, various
concepts of frequency domain and superposition can be applied
directly to CFD results as it has been employed in piston theory
and linear potential theory.

The objective of this work is to incorporate these concepts to
the steady pressure distributions and resulting aerodynamic
forces predicted by Euler or Navier-Stokes theories so that
conventional frequency domain flutter analysis approaches can
be applied. This approach, which assumes the flow conditions
change almost instantaneously when perturbed, takes advantage
of the quasi-steady aspect of the flow physics at high Mach
number conditions and can be explained in terms of the reduced
frequency, k = bV

The reduced frequency characterizes the unsteadiness of the
flow. As the velocity of the flow becomes very large, the
reduced frequency at flutter will eventually fall within the quasi-
steady range (k<<lI). Also at high Mach numbers, the flow
characteristics become dependent more on local conditions.
Thus, for decreasing & or increasing Mach number, the flow
characteristics approach a point relationship where pressures are
dictated only by the flow tangency condition at that point.

For the quasi-steady approach, the flow tangency boundary
condition is the primary source of the flow unsteadiness at high
Mach numbers. As described in Equation (1), the quasi-steady
pressure distribution is obtained by multiplying the aerodynamic
influence coefficient (AIC) matrix at zero reduced frequency by
the unsteady normalwash vector w.

= * Ap(xy) = AICy_gy w(x,y,1) 1)

The unsteady normalwash, which defines the kinematic
boundary conditions, is given by

w(xy,t) = dZidx + (1/Ves) OZIOt 2

For harmonic motion, the vertical deformation of the surface
is describe by

Z(xy) = i}¢j(x,y)zo,,-ei“" = }E;p,-(x,y)qj 3
JE J=

The normalwash boundary condition shown in equation (4)
is used in an aerodynamic calculation to obtain the pressure
differential for the jth mode ( Ap ).

wj(x,y) =09/ dx +i(k/b)g, @

The elements of the quasi-steady generalized aerodynamic
force (GAF) matrix are defined by

GAF;j = [[Apj(x,y)¢;(x,y)dxdy ©)

Area

where i represents the displacement mode (ith rigid or elastic
mode deformation) and j represents the pressure mode (pressure

distribution resulting from jth rigid or elastic mode deformation).

For quasi-steady flow, the elements of the GAF matrix can
be described as linear functions of reduced frequency and have
the form,

GAF(iw);= Ag;; + i (kib) A1 )

where A and A are real matrices. With the GAF matrices
accurately represented by linear functions of the reduced
frequency, as in equation (6), the aeroelastic equations of motion
in state-space form can be developed. The next section
describes how these matrices will be obtained from steady CFD
calculations.

Description of Quasi-Steady Method

The approach described in this section uses the concepts of
three-dimensional flow for both the boundary conditions and the
generalized force relationships. As mentioned previously, the
method requires that the flow be perturbed by the aerodynamic
surfaces only by small amounts so that the superposition
principle can be applied. Also, the method relies on the
separation of the boundary condition into a steady or real part
and a motion or imaginary part. A solution of each part of the
boundary conditions constitutes a separate steady CFD solution.

The first subsection presents a description of the boundary
conditions imposed for the quasi-steady CFD method. The
second and third subsections discuss example two- and three-
dimensional calculations, respectively. The CFD flow solver
used was CFL3D3 which cdn perform either Euler or Navier-
Stokes calculations on two- and three-dimensional grids.

spolication of Quasi-Steady Boundary Condifi

The CFD quasi-steady method requires only steady CFD
solutions in which special boundary conditions are used to
provide the appropriate pressure distributions for calculating the
GAF matrices. To obtain the individual parts of the GAF
matrices, two steady state pressure mode solutions are required
per vibratory mode. One solution provides the real part of the
pressure, while the other solution provides the imaginary part of
the pressure. Only one method is discussed for obtaining the
real part; however, two methods are proposed for the imaginary
part.

The CFD quasi-steady method is a perturbation approach in
which motion is assumed to be small and centered about the
static aeroelastic solution. A symmetric aeroelastic vehicle flying
at zero angle of attack will experience zero pressure differential
and its static aeroelastic shape will retain its undeformed shape,
So. In general, however, aceroelastic vehicles are asymmetric
and fly at non zero angles of attack. The resulting static
aeroelastic solution results in non zero steady state pressures and
structural deflections.



Assuming only vertical modal deformation, the general
aeroelastic vehicle shape is

S(x,y,2,t) = Z(x,,t) + Sgs(X,y,2) )]

where Sy is the static aeroelastic shape of the surface grid.
Since flutter calculations require only the pressures due to the
perturbation motion about Sgs, the pressure differentials for the

static aeroelastic solution (ACp s5) must be removed from the
unsteady pressures prior the calculating the GAF matrices.

Real Part. To calculate the real part of the pressures the grid
geometry for the static acroelastic shape is deformed to
incorporate mode shape deflections. The boundary condition
imposed by additively deforming the steady state surface grid

geometry into the jth mode shape is
$j(x,9.2) = 9j(x,9)4; + Ss5(x,3,2) ®

Where §;is the value of the modal scale factor used to scale
the mode shape deformation by an arbitrarily small amount, ¢;is

the mode shape function, and § is a function that describes the
contour of the deflected structure.

Using the deformed grid ($) the pressures for a given Mach
numbser are calculated using the CFD code. These pressures are
then used to calculate the real part of the pressure differential for
the jth mode, where

ACpf (X.3)=(CDupper (%,Y.45) =~ CPiower (£.¥.4i)) = 8Cpss  (9)

After calculating ACpjR for all the modes, the Ag matrix can
be calculated from

I
Agij == [ ACPF (x,y)pidxdy
4j Area

(10

Note that the scale factor value () is included in equation
(10) so that the product of ACp® and 1/ q jprovides the delta
pressure per unit generalized coordinate for the jth mode.

Imaginary Part. Two methods of providing the boundary
conditions necessary for calculating the imaginary part of the
GAF matrices are considered. One method is similar to the
method described for the real part where the grid is deformed to
provide the boundary condition. The other method uses the
static aeroelastic grid, S, but requires that a transpiration
velocity be applied to the surface of the body. Both of these
approaches are presented here.

Integration Method. The imaginary part of the pressure is
generated by the motion of the wing itself. Generally, most
steady CFD codes require the flow tangency condition as the
boundary condition quantified by

W, V§=0 11)
where W, is the steady state mass flux vector and VS is the
surface gradient representing a surface normal. Because this
relationship is "built into" most CFD codes, to represent the
flow tangency boundary condition it is necessary to
appropriately modify the mode shape deflections to simulate the
imaginary part of the boundary condition.

Equation (2) provides the appropriate relationship for
modifying the mode shapes. To obtain a grid shape that
provides the same boundary condition as the vehicle motion, the
downwash is set t0 zero as described in reference 4. By

substituting the contribution from the jth mode for Z, the
relationship becomes

9p; _ -1
J .
— =—0q; 12
EMRETRRIL) (12)
By redefining the generalized coordinate as the modal scale
factor (} j and redefining the left hand mode shape function as o,
equation (12) becomes
o":f) C -] .
J 2
—_—=—0:(x, i 13
V. $j(x,y)4; 13)

Integrating in the x-direction gives the equivalent deformed
shape. For a wing this method is implemented by integrating
from the leading edge to the trailing edge for each spanwise
station

a
S x=x

A -~ *=Xte
9j(x:y) =3~ [@j(x,y)x (14)
o X=Xlg

The surface computational grid is then deformed by the
integrated mode shape as

$(x,3,2) = Ss5(x,3,2)+ $;(x,y) (15)

Using the grid defined by §; and the CFD flow solver, the
pressure differential between the upper and lower surfaces is

ACT 5, (2,9) =(Cpy e (%.9:8) = Cppppyer (%.7,j)) = ACpss (16)

upper

and the term Ay is
Ve 1
qdj Area
It is convenient to define
(} .
d=—L 18
V. (18)
which results in the following,
“ X=Xte ‘
Pj(x,y)=—d /¢j(x,y)dx a9
X=X]e
1
Ay =5 J] ACH}(x,y ydxdy (20)
Area

j . The transpiration boundary condition
method is another approach for calculating the imaginary part of
the pressures. Again, the method is only applicable to small
perturbation theory conditions. A benefit of this method is that
the surface grid does not need to be deformed into the integrated
mode shapes. The procedure of deforming the grid can be very
time consuming especially for complicated configurations. In
the present implementation of the method, the transpiration
boundary condition is added to the other boundary conditions as
input to the CFD code. The downwash velocity on the surface
of the body becomes

a

wi(x,y) =§L¢j(x,y) @n



The pressure differential between the upper and lower
surface less the steady state pressure differential is

Aclpj (x.}’) = (Cp (x:)’-;lj) _Cplower (x:y:qu)) —ACps_y (22)

upper

Using the AC PJI and d from equation (18), the downwash
velocity and the imaginary part of the GAF matrices are
computed as

W](x:)’)=d¢j(x;)’) (23)
Ayj =;§‘ JIACY j(x,y)p;dxdy (24)
Area
E le_Calculati in T Di .

This subsection provides example quasi-steady calculations
of the real and imaginary parts of the aerodynamic forces for a
two-dimensional airfoil using the quasi-steady CFD (QSCFD)
method. Two alternative methods of computing these forces are
shown for comparison. One method is to perform unsteady
CFD calculations at a low reduced frequency to obtain the
aerodynamic forces. The other method is to calculate the
aerodynamic forces using piston theory. The mode shape
considered was rigid pitching of an airfoil about its leading edge.

While ACp s is in general non zero, the examples discussed
in this paper are symmetrical airfoil sections at zero angle of
attack. Consequently, the steady state shape is equal to the
undeformed shape S,, and the steady state pressure ACp g5 is
zero.

The 153x41 computational grid used in the two-dimensional
CFD calculations is shown in figure 1. The airfoil section is 4%
thick and representative of current NASP designs. This grid
was used directly for the unsteady CFD calculations and
deformed as necessary for the QSCFD calculations.

Fig. 1. 153X41 grid for two-dimensional calculations.

The QSCFD method was performed for Mach numbers of 5,
10 and 15. For the real part, the airfoil was deformed into the
pitching mode shape. Since the mode shape is rigid pitching,
the calculations need only be performed with the grid at an angle
of attack. The calculations were performed with an angle of
attack of 1 degree with respect to the far field flow. This 1
degree deflection was considered to fall within the limits of small

perturbation theory.

Both the integration and transpiration quasi-steady
approaches were used to calculate the imaginary part of the lift
cocfficient. For the calculation of the imaginary part using the
integration approach, the grid was deformed into the shape
shown in figure 2. For the calculation of the imaginary part with
the transpiration approach, a velocity boundary condition was
applied to the airfoil surface that was proportional to the mode
shape as defined by equation (23).
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Fig. 2. 153X41 grid for calculating the imaginary part of
the lift coefficient.

Unsteady calculations were performed for the airfoil pitching
about its leading edge with a reduced frequency of 0.1012 for
Mach numbers 5 and 10. At Mach 15, extremely small time
steps were required to maintain stability and the unsteady
answers were not obtained. The real and imaginary parts of the
lift coefficient can be obtained by assuming that the pressures
take the form of equation (6) and that there are no higher
harmonics. Thus, the real part of the pressure distribution is
obtained at a point in the pressure time history where maximum
pitch angle and zero angular rate occurs. Similarly, the
imaginary part of the pressure distribution is obtained at the
point where pitch angle is zero and angular rate is maximum.

Tables 1 and 2 contain results for the real and imaginary
parts of the lift coefficient, respectively. At Mach 5 both the real
and imaginary parts for all the methods were in good agreement.
At Mach 10 the unsteady and quasi-steady answers remain in
good agreement, while the piston theory answer begins to differ.
At Mach 15 the piston theory and quasi-steady answers are
significantly different as expected.

The imaginary calculations using the two QSCFD
approaches are compared in table 2. The two methods are in
close agreement at all Mach numbers examined. While both
methods produce nearly the same results, the transpiration
approach is simpler to implement and will be the preferred
approach throughout the paper.

Table 1. Real part of the lift coefficient.

5 0.01457 0.0139 0.0146
10 0.00773 0.00696 0.0081
15 NA 0.00463 0.0057

Table 2. Imaginary part of the lift coefficient.

Unsteady CFD:  Piston | QSCFD
€=0.1012) : Theory : Integration Transpiration

5 | 000263 :0.00268 000297 : 0.00282
10 | 000651 :0.000545 : 0.000687 : 0.000675
15 NA  : 0.0001766 5 0.000294 : 0.000299

Mach




E le Calculation in Three Di .

This sub section describes example calculations for a finite
wing. Here, unsteady results will be compared with QSCFD
results. The mode shape examined was rigid wing pitching
about the 65% root chord point. The configuration examined
was a generic hypersonic wing having the same airfoil shape as
shown in figure 1 and the planform shown in figure 3. The grid
used in the calculations was the 153X41X37 C-H grid shown
figure 4. CFL3D was the CFD code employed.

~—

70°

405 ft. * v

—
‘ 15|52t
- raes ]

Fig. 3. Wing planform.

The unsteady calculation was performed at a reduced
frequency of 0.0506 and the magnitude of pitching oscillation
was t1 degree. Two pressure distributions were extracted from
the time history of the unsteady calculation as described in the
previous subsection. The real and imaginary pressure
distributions using the quasi-steady and unsteady calculations
are shown in figures 5 and 6, respectively. Good agreement
was achieved for both the real and imaginary parts of the
pressures.
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a) QSCFD method.

b) Unsteady CFD method, k=0.0506.

Fig. 5. Comparison of real pressure coefficient distribution
computed with QSCFD and unsteady CFD methods.

b) Unsteady CFD method, k=0.0506.

Fig. 6. Comparison of imaginary pressure coefficient
distribution computed with QSCFD and unsteady
CFD methods.



Fl ysi

This section of the paper describes flutter calculations for a
hypersonic wing having eight flexible modes using the QSCFD
method. The planform and computational grid for the wing are
shown in figures 3 and 4, respectively.

Calculations were performed at Mach numbers of 5, 10 and
15. Three results were obtained at each Mach number. Two of
the results were obtained using the QSCFD method to calculate
the unsteady pressures; one with and the other without the
spanwise flux terms included. Neither unsteady CFD flutter
results nor experimental results were available for this

configuration.  Piston theory results are provided for
comparison.
QSCFD GAF Calculations

The subsection describes the QSCFD calculations of the
unsteady pressures and GAF matrices. Comparisons of the real
and imaginary parts of the pressure coefficients for flexible
mode 4 at Mach 5 are also provided. Mode 4 was selected
because it will be shown in the next subsection to be the
dominant component of the flutter mode at Mach numbers of 5
and 10.

As mentioned earlier, two sets of QSCFD calculations were
performed. One is referred to as the QSCFD 2d results because
the spanwise flux terms were zero. The other is referred to as
the QSCFD 3d results because the spanwise flux terms were
included.

To calculate the real part of the pressure, the undeformed
grid shown in figure 4 was used as a starting point and separate
grids were generated by deforming that grid into shapes
corresponding to each of the eight wing mode shapes. Figure 7
shows the deflection contour for the 4th flexible mode. Each of
these eight grids was used to obtain the wing surface pressure
distribution per unit deformation for each mode and Mach
number combination. Using these pressure distributions and the
wing mode shapes, the real parts of the GAF matrices were then
calculated. These values constitute the elements of Ag in
equation (6).

200

Y 00
inches

0 100 200 300 400 600
X, inches

Fig. 7. Deflection contour for the 4th flexible mode.

To calculate the imaginary parts of the pressure, a data file
was created for each mode that contained the desired vertical
velocity on the surface of the wing. By performing separate
steady-state calculations for each mode shape data file and Mach
number combination, the imaginary parts of the pressures were
calculated. These pressure distributions and the mode shapes
were then used to calculate the imaginary parts of the GAF
matrices represented by A; in equation (6).

Figures 8 and 9 compare the Mach 5 real and imaginary
pressures, respectively, associated with the 4th mode. Figure 8
indicates good agreement among the three results for the real part
of the pressures. Figure 9 indicates good agreement between the
imaginary pressures from the QSCFD 2d calculations and the
piston theory calculations. While similar in character, the
QSCFD 3d imaginary results are somewhat different from the
others.

¢) QSCFD 3d calculation.

Fig. 8. Real part of Mach 5 pressure coefficient contours
associated with mode 4.

Two distinct trends were observed in the pressure contour
plots as Mach number was increased from 5 to 15. First, the
QSCFD 2d and 3d pressure distributions became increasingly
similar. Second, the piston theory pressure distributions became
significantly different from the QSCFD pressures. The effects
of these trends subsequently showed up in the flutter analysis
results described in the next subsection.

Elutter Calculation

A comparison of the flutter root locus was undertaken for the
different aerodynamic analysis methods and Mach numbers.
The purpose of the study was to assess the effect of the GAF
matrices produced by the aerodynamic methods on flutter. The
structural parts, that is, the vibration frequencies, generalized
masses, mode shapes, and structural damping, are identical for
all cases. The flutter equations of motion were transformed to
1st order form using the ISACS code. This code was used to
obtain the Ag and A; aerodynamic matrices as defined by
equation (6). Matched point flutter analyses were performed

;vhcrc the altitude range was varied from sea level to 80,000
eet.
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a) Piston theory calculation.

b) QSCFD 2d calculation.

¢) QSCFD 3d calculation.

Fig. 9. Imaginary part of Mach 5 pressure coefficient
contours associated with mode 4.

The results for all the flutter analyses are summarized in table
3. In all cases the primary mechanism for aeroelastic instability
is divergence. The reason for this instability can be attributed to
the pivot point being very far aft on the wing as seen in figure 3.
In order to compare effects of the various aerodynamic methods
on flutter, the dynamic pressure of the first and, where
applicable, the second dynamic instability points are shown.

Figure 10 shows the root locus results for the three
acrodynamic calculations at Mach 5. The root locus plots
generally look very similar for all the aerodynamic methods, and
a hump mode is the cause of the flutter instability for both the
QSCFD 2d and piston theory results at Mach 5. Much the same
type of behavior is noted for this mode in the QSCFD 3d results.
However, the inclusion of the spanwise flux terms into the
CFL3D calculations has altered the pressures enough to move
the hump mode into a stable region as illustrated in figure 10(c).

" Except for the Mach 5 result, the QSCFD 2d and 3d results
are in good agreement for all the quantities provided in table 3.
PPiston theory is shown to increasingly under-predict flutter and
idivergence dynamic pressure ‘as compared with the QSCFD
.calculations as Mach number increases.

" The piston theory flutter frequency is in good agreement
with the QSCFD 2d frequency at Mach 5 indicating similar
flutter mechanisms. At Mach 10 the frequencies of the first and
second instability are consistent indicating similar flutter
mechanisms for both the QSCFD and piston theory calculations.
At Mach 15 the piston and QSCFD calculations each predict
different primary flutter mechanisms. This is attributed to the
fact that piston theory predicted imaginary GAF elements
significantly larger than those predicted by the QSCFD
calculations.
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a) Using piston theory GAF matrices.
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¢) Using QSCFD 3d GAF matrices.

Fig. 10. Mach 5 root locus results.



Table 3. Comparison of flutter results.

Mach number
5 10 15
Aerodynamic methods
@ of qq G Of q | U g A4
psi  1/s  psi psi 1/s psi psi  1fs psi
Boj129 78 50 [ 184 78 66 | 250 72 81
Piston theory
2nd - - 537 186 - 634 181 -
st 169 80 50 331 81 109 | 982 224 271
QSCFD 2d
2nd - - 578 212 - - - -
st - 59 330 82 114 | 981 224 267
QSCFD 3s
2nd - - 586 208 - - - -
If the quasi-steady method can be considered the more Concjuding Remarks

accurate method for computing the acrodynamic forces, then
from both the stand point of the root locus plots and the flutter
and divergence dynamic pressures, piston theory shows limited
accuracy with large conservatism at elevated Mach numbers.

Recommendations

All the CFD calculations presented in this paper used Euler
equations. While solutions of the Euler equations can be
obtained over a wide range of flow conditions, viscous effects
may be required in certain instances to get accurate solutions.
Consequently, future applications of the QSCFD method should
consider using solutions of the Navier-Stokes equations when

viscous effects are expected to have a significant impact on
pressure distributions.

The same grid was used for all the QSCFD calculations used
in the flutter analyses. To get CFD solutions of the highest
accuracy it is often required that grids be designed with some a
priori knowledge of the flow field solution or that the CFD code
has adaptive mesh refinement capabilities. Since making
computational grids is a time consuming process, the use of
such an adaptive code is an ideal way to improve solution
accuracy without increasing the analyst's workload.

. While the QSCFD pressures have been compared with
unsteady pressures for a single mode at a time, the general
applicability of the superposition assumption has not been
completely answered for flexible modes. In addition, the
QSCFD flutter results have only been compared with
calculations using piston theory. To fully validate the method,
unsteady CFD flutter analysis results need to be compared with a
QSCFD flutter analysis.

The selection of the perturbation scale factors was not
addressed in the paper. In highly nonlinear flow the linearized
aerodynamics from the QSCFD method could be very sensitive
to the quantities chosen as scale factors. The sensitivities of
these scale factors need to be considered when performing the
QSCFD analysis.

Because of the extremely high cost of performing time-
accurate unsteady CFD calculations required for a flutter analysis
and the lack of other, accurate, computationally efficient means
of obtaining the acrodynamics at hypersonic Mach numbers, a
new approach requiring only steady CFD computations has been
developed. The quasi-steady CFD method uses special
boundary conditions for computing the unsteady pressures from
steady CFD calculations. These pressures can then be used to
calculate the generalized aerodynamic force matrices for use in
conventional flutter analyses. The quasi-steady CFD method
was demonstrated using two- and three-dimensional calculations
at supersonic and hypersonic Mach numbers.

The quasi-steady CFD aerodynamics should be more
accurate and potentially less conservative than that obtained by
piston and Newton impact theories. More accurate
aerodynamics will bring about more realistic flutter sizing and
possibly lighter structural weights for hypersonic vehicles. The
quasi-steady technique goes beyond piston theory by including
the steady nonlinear aerodynamic effects of the perturbation
point. Thus, this paper has presented an efficient means of
using high fidelity aerodynamics in a relatively computationally
efficient flutter analysis.
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